How to Test Complex VLSI/SoC

2010

Sungho Kang

Outline

- What is Testing?
- Faults, ATPG & Fault Simulation
- Ad-Hoc
- Scan
- ◆ Logic BIST & Memory BIST
- P1149.1 & P1500
- Conclusion

Testing

Defect

• Physical deviation from some specified properties

Test

• An experiment whose purpose is to detect the presence of detects and to diagnose the source of defects

Byproduct of testing

- Reliability measurement of the product and process
- Quality assurance
- Assistance to verification and validation

Verification vs Testing

- Verification
 - Correctness of design
 - Simulation, Emulation and Formal verification
 - Performed once before manufacturing
 - Responsible for quality of design

Testing

- Correctness of manufactured hardware
- Test generation and test application
- Performed every manufactured devices
- Responsible for quality of devices

Testing Costs

To detect problems early (Rule of Ten)

• Test	Failure	Cost
Chip Test	Component Failure	\$0.3
Board Test	Board Failure	\$3
System Test	System Failure	\$30
Field Test	Field Failure	\$300

VLSI Chip Yield

- A manufacturing defect is a finite chip area with electrically malfunctioning circuitry caused by errors in the fabrication process
- A chip with no manufacturing defect is called a good chip
- Fraction (or percentage) of good chips produced in a manufacturing process is called the yield

Bathtub Curve

Quality of Test

Design for Testability

 Refers to those design techniques that make test generation and test application cost-effective

Why need?

• Difficulty in preparing test patterns

Advantages

- Test generation is easy
- High quality testing
- Disadvantages
 - Area overhead
 - Timing overhead

Current Situation

- Increase of complexity
 - Moore's Law
 - No. of transistors doubles every 18 months
- Increase of speed
 - 30% increase per year
 - Timing and signal integrity
- Increase of test cost
 - 30-40% of overall cost
- Increase of ATE performance
 - 12% increase per year
- Time to Market
 - Exhaustive testing is no good
 - 8080 takes 10²⁰ years at one million tests per second

Manufacturing Defects

In fabrication, defects get introduced from many sources:

Logical Fault Models

- Gate Level Faults
 - Stuck-at
 - Short between signal and ground or power
 - Bridging
 - Short between two signals
- Transistor Level Faults
 - Short
 - Connecting points not intended to be connected
 - Open(break)
 - Breaking a connection
 - Stuck-on (stuck-short)
 - Stuck-open (stuck-off)
- Delay Faults
- Temporary Faults

Single Stuck-at Fault (SSF) Only one line in the circuit is faulty at a time

- The fault is permanent (as opposed to transient)
- The effect of the fault is as if the faulty node is tied to either Vcc (s-a-1), or Gnd (s-a-0)
- The function of the gates in the circuit is unaffected by the fault

RELIABLE SOC LAB.

26

RELIABLE SOC LAB.

Classification of DFT

- Ad-Hoc Design
 - Initialization
 - Adding extra test points
 - Circuit partitioning
- Structured Design
 - Scan design
 - Boundary Scan
 - Built-in Self Test

Partitioning

- Physically divide the system into multiple chips or boards
- On board-level systems, use jumper wires to divide subunits
- Can have performance penalties

Test Point Insertion

- Employ test points to enhance controllability and observability
- Large demand on extra I/O pins
- ♦ Example

Sources of DFT Rule Violation

- Reset/preset violations
 - Controllability through PIs or disabled during test
- Clock rule violations
 - Controllability/gating
- Tristate bus violations
 - Ensures there is no contention
- Bidirectional I/O violations
 - Controls direction to avoid contentions
- Latch violations
 - Ensures transparency during test mode
- Shift constraint violations
 - Ensures proper shifting of data through the scan chain

Scan Chain Reordering

- To reduce the routing congestions
- To reduce the hold-buffer insertion during placement
 - May need skew-based optimization

Built In Self Test

- Capability of a product to carry out an explicit test of itself
 - Test patterns are generated on-chip
 - Responses to the test patterns are also evaluated on chip
 - External operations are required only to initialized the built-in tests and to check the test results (go/no-go)

RELIABLE SOC LAB.

LFSR Example

♦ Characteristic Polynomial : 1+x²+x³

- Initial condition (1,0,0) : x
- Q1 : $x / (1+x^2+x^3)$
- Q2 : $x^2 / (1 + x^2 + x^3)$
- Q3 : x³ / (1+x²+x³)

LFSR Example

- ♦ When initial state is 100
 - Q1 Q2 Q3
 - 1 0 0
 - 0 1 0
 - 1 0 1
 - 1 1 0
 - 1 1 1
 - 0 1 1
 - 0 0 1
 - 1 0 0
 - 0 1 0
 1 0 1

- ♦ When initial state is 000
 - Q1 Q2 Q3
 - 0 0 0
 - 0 0 0

Test-per-Clock

- Test patterns are applied to CUT every clock cycle
- Additional logic and delay are required between the input FF and CUT
- BILBO like type: Cannot perform compression and pattern generation concurrently
- Entire test is scheduled and divided into sessions
- Complex test control unit is required

STUMPS

- Self Testing Using MISR and Parallel SRSG
 - Centralized and separate BIST
 - Multiple scan paths
 - Reduction in test time

Lower overhead than BILBO but takes longer to apply

Short test time

COMPUTER SYSTEMS &

RELIABLE SOC LAB.

Time

Heavy H/W overhead

Long test time

Time

Light H/W overhead

Optimal test time

Time

Optimal H/W overhead

Why Need Test Compression ?

- Today's SoC environments
 - Large and complex VLSI circuits
 - Need an enormous amount of test data
- Limitations of ATE based test methods
 - Channel width and memory size
 - Modified or more expensive ATE must be required
- Reducing test data by eliminating useful test patterns
 - Can be reduced for the size of the ATE memory
 - Deceases the accuracy of testing

Test Compression

- Compress the test input sequences
- Need a decompression units to make original test sequences
- Can be reduced for both limitations of ATE
 - The size of ATE memory
 - The width of ATE channel
- Can be reduced test application time

Embedded Memory Testing

Source: ITRS 2001 – Percentage of Logic Forecast in SoC Design

Year	Node (nm)	% Area New Lo gic	% Area Reused Logi c	% Area Memory
1999	180	64	16	20
2002	130	32	16	52
2005	100	16	13	71
2008	70	8	9	90
2014	35	2	4	94
2014			-	

Memory Functional Model

MBIST Basic Architecture

- Fault Model
 - Stuck-at Fault
 - Address Decoding Fault
 - Coupling Fault
 - Pattern-Sensitive Fault
- Memory Test Algorithms
 - March Test
 - Checkerboard
 - Zero-One

Concept of Boundary Scan

- Improve testability by reducing the requirements placed on the physical test equipment
- Also called
 - JTAG (Joint Test Action Group) Boundary Scan Standards
 - IEEE P1149.1
- Why use it?
 - Testing interconnections among chips
 - Testing each chip
 - Snapshot observation of normal system data
- Why testing boards?
 - To test board is easier than to test systems

IEEE 1149.1 Device Architecture

The Principle of BS Architecture TDI Any Digital Chip Any Digital Chip тск TMS Any Digital Chip Any Digital Chip TDO

SOC Design Evolution

- Emergence of very large transistor counts on a single chip
- Mixed technologies on the same chip
- Creation of Intellectual Property (IP)
- Reusable IP-based design

Test Access

- No Direct Physical Access Method
 - Test access mechanism is required
- Today's chip is tomorrow's core

Test Challenges

- ♦ Test quality
- Test cost reduction
- At-speed test
- Reduction of design efforts
- ♦ Test design reuse

